Application Design: Catch the Ball

Key Points

1. Learn IIC for communication between two MCUs

2. Make your robot pursue an infrared ball

3. Equipment needed: miniQ v2.0, MicroUSB Cable, Upperdeck
for MiniQ, Infrared transmitters and receivers, Proto board,
soldering station, soldering iron.

Tutorial

We have learned much about the program and circuit about your robot. And we
feel that stopping this series of tutorial by obstacle avoidance or line tracking is not
enough. So let’s try to make a fun project.

And we don’t need our robot to pursue a real rolling ball, so we use an infrared
ball, thus the robot can only follow your ball. Thus the robot is absolutely yours. And
things may be a little difficult as we need to make an infrared ball first. The ball is not
easy to make but the circuit is easy---just a lot infrared LED connect in parallel.

This is a kind of infrared ball:

1 Infrared Ball

And a little(big in fact) alteration of the ball | made:

2 Ball I made
That doesn’t seem like a ball, but it can work. And you can alse do some
decoration. For the circuit, as simple as usual:

VCC

70

W}
ED

GND
3. Circuit of infrared leds

R1, R2, R3are resisitors of 470Q, D1, D2, D3 are infrared led. And we aslo
have another picture for check your circuit:

GND

VCC

4 Infrared LEDs connection diagram
Power supply can be 4-6V, you can choose one to fit your situation, the resistor

can be 470 to 1k Q, and 470 is recommended.

This board is designed for miniQ, we can see it as a round board consist of

Leonardo and external proto board. It makes Leonardo more convenient to use and
more customized for miniQ.

See what we will do for the board:

cXe) z =
eO o ®
e .A ®0
o O®
o¥a,)
o) ®
< ®
eeo a
® 5 3 0
® ty
> ® @
OO g
e - D Plus »
® < DB @
® «
. > e b
2
=1 7 .
2
®

5 Top board with infrared receivers

o » & £
b *"v - o6c

Y g 5 i P = L ad .‘t’:f“
P HEe58080 % : R L oOu L T EC
;Zi:’,:zmr-,oaeoﬁe - L eeeocoee
m(.,(-,f')(j?)’bbeﬁfl k
©6One666080.., - z
6re60600009
©neH666009
HeHO000000
0606000000,
©600060000

5600600009

® co0

. -
0000000(‘)00'

s GOCOHOOC,

S 00069 066

% 0666606
'gggeoeeﬁﬁh
. B8ee6e660Y
BEOGHE66Aa
56G00

6 Top board with infrared receivers

In this step we will get enough soldering experience, start by soldering the
receivers. That is really a good soldering experience for beginners. And be careful
about the hot electric soldering iron. When finish soldering, check your circuit twice
for bridged solder spots, like ground connected to power, to ensure your components
won’t be destroyed.

The schematic diagram:

VCC

AD! N
y 2 D2 2| D
al A0 Al A A2
—Cl1 1 —_——C2 _—T:C3 3
103 10K 10K 10K
I O @
GND

7 schematic diagram of infrared receivers
D1, D2, D3 are infrared receivers, A0, Al, A2 connect analog ports in arduino A1,A2 and
A3. All the 6 receivers use the some way so the left ones you connect yourselves.
If you don’t like schematic diagram, you can check your soldering with this
diagram:

8. Sketch map of infrared receivers

javascript:void(0);
javascript:void(0);
javascript:void(0);

OK, after soldering the receivers, now check it:
Download the code:
void setup()

{
Serial.begin(9600);//baud rate: 9600
}
void loop()
{
for(int 1=0;i<6;i++)
{
int x=analogRead(i); //read the analog value of pin “i”, “i”” is 0~5
Serial.print(x); /lprint the value read
Serial.print(" ");
}
Serial.printin();
delay(500); //delay 500ms
}

109 93 66 66 74 105
108 92 63 63 69 88
85 60 5% @5 96
55 49 52 &7
70 52 @5

[#]Autescroll Both NL & CR W 9600 baud W

9. Value get in normal situation

-
180
172
171
177
180
172
170
175
335 176
333 173
327 168 !] ;
321 172 188 _+ Much bigger than other pins
334 176 20077 -
142 335 4176 197
133 :326 169 191
131 1325 168 192
139 '333 1175 198
141, 335, 177 200
134 1326 1168 191
132 :324 "167 190

136 1331 ;172 188
-

W

[#] Autoscroll Both NL & CR v | 9600 baud v

10. Put your infrared ball in front of your board
If your board performanced well, you can install the board on your miniQ. Just connect them
use this port:

Communication port on miniQ
1

11.The connection port
We need to download two programs into miniQ and the board. “Bottom.ino” for
miniQ and “Top.ino” for the board.

Code Analysis

B Top board:

<> Function for send command

® void Send_Command(char command,int num)

o {
) Wire.beginTransmission(Address_Bottom); //send data to address 2
o Wire.write(command); //send---action command
o Wire.write(num); //send data----value
o Wire.endTransmission(); /[stop transmission
° Serial.printin(num);//for debug, can be deleted
* }
< Get the direction of the ball
® for(int i=0;i<6;i++) /[Find the biggest value and which sensor
gives the value
o {
o if(Distance[i]>Dist_Max)
1 {
L Dist_Max=Distance[i];
() Num_Max=i;
1 ¥
o Serial.print(Distance[i]);
o Serial.print(" "');
* }
<> When the biggest value is more than 100, send the command
® if(Dist Max>100)
o {
o If(Num_Max<2) {Send_Command(cmd[2],100);}//if the pin is

0 or 1, let miniQ turn Left
else if(Num_Max==4 || Num_Max==5)
{
Send_Command(cmd[3],100);
HI/if the pinis 4 or 5, send “R100”
else if(Num_Max==2 || Num_Max==3)
{
if(Dist_Max>800)//if the value is too big(get the ball)
{
Send_Command(cmd[4],100);
Serial.printin(cmd[4]);delay(200);//S100 for Stop
}

else

{
Send_Command(cmd[0],100);Serial.printin(cmd[0]); //if

distance is too far, go forward

o }

o }

* }

) else

o {

) Send_Command(cmd[4],80);Serial.printin(cmd[2]);
* }

B Code for miniQ:

< Main function:

® void loop()

{

Motor();//Control motors
Color();//Control RGB LED

}
<> Function for control LED

® void Color()//Read the command, then action

o {

[switch (Cmd_Str)

o {

® case 'F: strip.setPixelColor(0, 0xbb0000); strip.show();
break;

° case 'B" strip.setPixelColor(0, 0x0000bb); strip.show();
break;

° case 'L strip.setPixelColor(0, 0x00bb00); strip.show();
break;

® case 'R strip.setPixelColor(0, 0x550055); strip.show();
break;

° case 'S strip.setPixelColor(0, 0x005555); strip.show();
break;

L default: break;

* }

* }

< Function for motors

® void Motor()//Read the command, then action

o {

[switch (Cmd_Str)

o {

° case 'F': Forward(Cmd_Num,Cmd_Num); break;
° case 'B": Back(Cmd_Num,Cmd_Num); break;
) case 'L": Turn_Left(Cmd_Num,Cmd_Num); break;

° case 'R": Turn_Right(Cmd_Num,Cmd_Num); break;
) case 'S": Stop(); break;

® default: break;

®

® }

< Action for command receive

® void receiveEvent(int howMany)//Receive interrupt

o {

° while(Wire.available()>1) // loop through all but the last
o {

[Cmd_Str = Wire.read(); // receive byte as a character
o Serial.print(Cmd_Str); /I print the character

e 3}

o Serial.print(" ");

° Cmd_Num = Wire.read(); /I receive byte as an integer
° Serial.printin(Cmd_Num); /I print the integer
° }

How Does It Work?

In this project, we use two Arduino boards, and each of them do their own job.
One for find the ball and another for control the motors. You may be wondering that
why not only use one MiniQ without the “Leonardo” board? One reason is the port of
MiniQ don’t connect some pin header connecters for us and one more import point is
the pins is nearly used up. So it is better to use another board to collect the
information.

The “Leonardo” will send command to miniQ through IIC, and miniQ will have
different reaction when receive different command. Cause each part do their own job,
so when an error happen, it is easy to find the reason and then solve it.

Let’s see the algorithm in “Leonardo”:

Get the value of sensors

Find out which sensor gives
the biggest value and the
biggest value

Send command

12. Flow chart for top board
From the flow chart, we can see “Leonardo” need to get information of every sensor and find
the which sensor gives the biggest value, then send a command depend on the value. It didn’t need
to consider how to driver the motors ans LEDs.
And the flow chart of miniQ:

Control Motors Receive data

Control LED

13. The flow chart of miniQ

All the action of miniQ will depend on the command of “Leonardo”. So MiniQ
do not need to know the feedback of sensors.

Here we will learn how to communicate each other, the answer is called 1IC
protocol. We use IIC to send data to each other, but how the other one knows which
action should it finish? Take a simple example, the expansion shield want miniQ to
turn left at speed of 100, it just need to send “L” and “100” to miniQ, and for miniQ,
many data will be received, if the data is “H999”, that’s not effective, just ignore it.

In this way, you can work with your friends and it is easy to distinguish which
one programs wrong. That is really a good way to finish big project, right?

